3.254 \(\int \frac{\sqrt{d+e x^2} (a+b \log (c x^n))}{x} \, dx\)

Optimal. Leaf size=220 \[ -\frac{1}{2} b \sqrt{d} n \text{PolyLog}\left (2,1-\frac{2 \sqrt{d}}{\sqrt{d}-\sqrt{d+e x^2}}\right )+\left (\sqrt{d+e x^2}-\sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )\right ) \left (a+b \log \left (c x^n\right )\right )-b n \sqrt{d+e x^2}+\frac{1}{2} b \sqrt{d} n \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )^2+b \sqrt{d} n \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )-b \sqrt{d} n \log \left (\frac{2 \sqrt{d}}{\sqrt{d}-\sqrt{d+e x^2}}\right ) \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right ) \]

[Out]

-(b*n*Sqrt[d + e*x^2]) + b*Sqrt[d]*n*ArcTanh[Sqrt[d + e*x^2]/Sqrt[d]] + (b*Sqrt[d]*n*ArcTanh[Sqrt[d + e*x^2]/S
qrt[d]]^2)/2 + (Sqrt[d + e*x^2] - Sqrt[d]*ArcTanh[Sqrt[d + e*x^2]/Sqrt[d]])*(a + b*Log[c*x^n]) - b*Sqrt[d]*n*A
rcTanh[Sqrt[d + e*x^2]/Sqrt[d]]*Log[(2*Sqrt[d])/(Sqrt[d] - Sqrt[d + e*x^2])] - (b*Sqrt[d]*n*PolyLog[2, 1 - (2*
Sqrt[d])/(Sqrt[d] - Sqrt[d + e*x^2])])/2

________________________________________________________________________________________

Rubi [A]  time = 0.333701, antiderivative size = 220, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 9, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.36, Rules used = {266, 50, 63, 208, 2348, 5984, 5918, 2402, 2315} \[ -\frac{1}{2} b \sqrt{d} n \text{PolyLog}\left (2,1-\frac{2 \sqrt{d}}{\sqrt{d}-\sqrt{d+e x^2}}\right )+\left (\sqrt{d+e x^2}-\sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )\right ) \left (a+b \log \left (c x^n\right )\right )-b n \sqrt{d+e x^2}+\frac{1}{2} b \sqrt{d} n \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )^2+b \sqrt{d} n \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )-b \sqrt{d} n \log \left (\frac{2 \sqrt{d}}{\sqrt{d}-\sqrt{d+e x^2}}\right ) \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[d + e*x^2]*(a + b*Log[c*x^n]))/x,x]

[Out]

-(b*n*Sqrt[d + e*x^2]) + b*Sqrt[d]*n*ArcTanh[Sqrt[d + e*x^2]/Sqrt[d]] + (b*Sqrt[d]*n*ArcTanh[Sqrt[d + e*x^2]/S
qrt[d]]^2)/2 + (Sqrt[d + e*x^2] - Sqrt[d]*ArcTanh[Sqrt[d + e*x^2]/Sqrt[d]])*(a + b*Log[c*x^n]) - b*Sqrt[d]*n*A
rcTanh[Sqrt[d + e*x^2]/Sqrt[d]]*Log[(2*Sqrt[d])/(Sqrt[d] - Sqrt[d + e*x^2])] - (b*Sqrt[d]*n*PolyLog[2, 1 - (2*
Sqrt[d])/(Sqrt[d] - Sqrt[d + e*x^2])])/2

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 2348

Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_.))/(x_), x_Symbol] :> With[{u = IntHi
de[(d + e*x^r)^q/x, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[Dist[1/x, u, x], x], x]] /; FreeQ[{a, b
, c, d, e, n, r}, x] && IntegerQ[q - 1/2]

Rule 5984

Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c
*x])^(p + 1)/(b*e*(p + 1)), x] + Dist[1/(c*d), Int[(a + b*ArcTanh[c*x])^p/(1 - c*x), x], x] /; FreeQ[{a, b, c,
 d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0]

Rule 5918

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> -Simp[((a + b*ArcTanh[c*x])^p*
Log[2/(1 + (e*x)/d)])/e, x] + Dist[(b*c*p)/e, Int[((a + b*ArcTanh[c*x])^(p - 1)*Log[2/(1 + (e*x)/d)])/(1 - c^2
*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0]

Rule 2402

Int[Log[(c_.)/((d_) + (e_.)*(x_))]/((f_) + (g_.)*(x_)^2), x_Symbol] :> -Dist[e/g, Subst[Int[Log[2*d*x]/(1 - 2*
d*x), x], x, 1/(d + e*x)], x] /; FreeQ[{c, d, e, f, g}, x] && EqQ[c, 2*d] && EqQ[e^2*f + d^2*g, 0]

Rule 2315

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> -Simp[PolyLog[2, 1 - c*x]/e, x] /; FreeQ[{c, d, e}, x] &
& EqQ[e + c*d, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{x} \, dx &=\left (\sqrt{d+e x^2}-\sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )\right ) \left (a+b \log \left (c x^n\right )\right )-(b n) \int \left (\frac{\sqrt{d+e x^2}}{x}-\frac{\sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )}{x}\right ) \, dx\\ &=\left (\sqrt{d+e x^2}-\sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )\right ) \left (a+b \log \left (c x^n\right )\right )-(b n) \int \frac{\sqrt{d+e x^2}}{x} \, dx+\left (b \sqrt{d} n\right ) \int \frac{\tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )}{x} \, dx\\ &=\left (\sqrt{d+e x^2}-\sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )\right ) \left (a+b \log \left (c x^n\right )\right )-\frac{1}{2} (b n) \operatorname{Subst}\left (\int \frac{\sqrt{d+e x}}{x} \, dx,x,x^2\right )+\frac{1}{2} \left (b \sqrt{d} n\right ) \operatorname{Subst}\left (\int \frac{\tanh ^{-1}\left (\frac{\sqrt{d+e x}}{\sqrt{d}}\right )}{x} \, dx,x,x^2\right )\\ &=-b n \sqrt{d+e x^2}+\left (\sqrt{d+e x^2}-\sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )\right ) \left (a+b \log \left (c x^n\right )\right )+\left (b \sqrt{d} n\right ) \operatorname{Subst}\left (\int \frac{x \tanh ^{-1}\left (\frac{x}{\sqrt{d}}\right )}{-d+x^2} \, dx,x,\sqrt{d+e x^2}\right )-\frac{1}{2} (b d n) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{d+e x}} \, dx,x,x^2\right )\\ &=-b n \sqrt{d+e x^2}+\frac{1}{2} b \sqrt{d} n \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )^2+\left (\sqrt{d+e x^2}-\sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )\right ) \left (a+b \log \left (c x^n\right )\right )-(b n) \operatorname{Subst}\left (\int \frac{\tanh ^{-1}\left (\frac{x}{\sqrt{d}}\right )}{1-\frac{x}{\sqrt{d}}} \, dx,x,\sqrt{d+e x^2}\right )-\frac{(b d n) \operatorname{Subst}\left (\int \frac{1}{-\frac{d}{e}+\frac{x^2}{e}} \, dx,x,\sqrt{d+e x^2}\right )}{e}\\ &=-b n \sqrt{d+e x^2}+b \sqrt{d} n \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )+\frac{1}{2} b \sqrt{d} n \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )^2+\left (\sqrt{d+e x^2}-\sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )\right ) \left (a+b \log \left (c x^n\right )\right )-b \sqrt{d} n \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right ) \log \left (\frac{2 \sqrt{d}}{\sqrt{d}-\sqrt{d+e x^2}}\right )+(b n) \operatorname{Subst}\left (\int \frac{\log \left (\frac{2}{1-\frac{x}{\sqrt{d}}}\right )}{1-\frac{x^2}{d}} \, dx,x,\sqrt{d+e x^2}\right )\\ &=-b n \sqrt{d+e x^2}+b \sqrt{d} n \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )+\frac{1}{2} b \sqrt{d} n \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )^2+\left (\sqrt{d+e x^2}-\sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )\right ) \left (a+b \log \left (c x^n\right )\right )-b \sqrt{d} n \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right ) \log \left (\frac{2 \sqrt{d}}{\sqrt{d}-\sqrt{d+e x^2}}\right )-\left (b \sqrt{d} n\right ) \operatorname{Subst}\left (\int \frac{\log (2 x)}{1-2 x} \, dx,x,\frac{1}{1-\frac{\sqrt{d+e x^2}}{\sqrt{d}}}\right )\\ &=-b n \sqrt{d+e x^2}+b \sqrt{d} n \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )+\frac{1}{2} b \sqrt{d} n \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )^2+\left (\sqrt{d+e x^2}-\sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )\right ) \left (a+b \log \left (c x^n\right )\right )-b \sqrt{d} n \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right ) \log \left (\frac{2 \sqrt{d}}{\sqrt{d}-\sqrt{d+e x^2}}\right )-\frac{1}{2} b \sqrt{d} n \text{Li}_2\left (1-\frac{2}{1-\frac{\sqrt{d+e x^2}}{\sqrt{d}}}\right )\\ \end{align*}

Mathematica [C]  time = 0.321716, size = 203, normalized size = 0.92 \[ \frac{b n \sqrt{d+e x^2} \left (-\, _3F_2\left (-\frac{1}{2},-\frac{1}{2},-\frac{1}{2};\frac{1}{2},\frac{1}{2};-\frac{d}{e x^2}\right )+\log (x) \sqrt{\frac{d}{e x^2}+1}-\frac{\sqrt{d} \log (x) \sinh ^{-1}\left (\frac{\sqrt{d}}{\sqrt{e} x}\right )}{\sqrt{e} x}\right )}{\sqrt{\frac{d}{e x^2}+1}}+\sqrt{d+e x^2} \left (a+b \log \left (c x^n\right )-b n \log (x)\right )-\sqrt{d} \log \left (\sqrt{d} \sqrt{d+e x^2}+d\right ) \left (a+b \log \left (c x^n\right )-b n \log (x)\right )+\sqrt{d} \log (x) \left (a+b \log \left (c x^n\right )-b n \log (x)\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[d + e*x^2]*(a + b*Log[c*x^n]))/x,x]

[Out]

(b*n*Sqrt[d + e*x^2]*(-HypergeometricPFQ[{-1/2, -1/2, -1/2}, {1/2, 1/2}, -(d/(e*x^2))] + Sqrt[1 + d/(e*x^2)]*L
og[x] - (Sqrt[d]*ArcSinh[Sqrt[d]/(Sqrt[e]*x)]*Log[x])/(Sqrt[e]*x)))/Sqrt[1 + d/(e*x^2)] + Sqrt[d + e*x^2]*(a -
 b*n*Log[x] + b*Log[c*x^n]) + Sqrt[d]*Log[x]*(a - b*n*Log[x] + b*Log[c*x^n]) - Sqrt[d]*(a - b*n*Log[x] + b*Log
[c*x^n])*Log[d + Sqrt[d]*Sqrt[d + e*x^2]]

________________________________________________________________________________________

Maple [F]  time = 0.408, size = 0, normalized size = 0. \begin{align*} \int{\frac{a+b\ln \left ( c{x}^{n} \right ) }{x}\sqrt{e{x}^{2}+d}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*ln(c*x^n))*(e*x^2+d)^(1/2)/x,x)

[Out]

int((a+b*ln(c*x^n))*(e*x^2+d)^(1/2)/x,x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*x^n))*(e*x^2+d)^(1/2)/x,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{e x^{2} + d} b \log \left (c x^{n}\right ) + \sqrt{e x^{2} + d} a}{x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*x^n))*(e*x^2+d)^(1/2)/x,x, algorithm="fricas")

[Out]

integral((sqrt(e*x^2 + d)*b*log(c*x^n) + sqrt(e*x^2 + d)*a)/x, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b \log{\left (c x^{n} \right )}\right ) \sqrt{d + e x^{2}}}{x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*ln(c*x**n))*(e*x**2+d)**(1/2)/x,x)

[Out]

Integral((a + b*log(c*x**n))*sqrt(d + e*x**2)/x, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e x^{2} + d}{\left (b \log \left (c x^{n}\right ) + a\right )}}{x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*x^n))*(e*x^2+d)^(1/2)/x,x, algorithm="giac")

[Out]

integrate(sqrt(e*x^2 + d)*(b*log(c*x^n) + a)/x, x)